

Domain 1

Advanced Application of Safety Principles • 25%

- 1. Describe the principles of minimizing hazards using Prevention-Through-Design (e.g., avoidance, elimination, substitution, safety design criteria for workplace facilities, machines, and practices)
- 2. Apply the principles of process safety (e.g., pressure relief systems, chemical compatibility, management of change, materials of construction, process flow diagrams)
- 3. Evaluate common workplace hazards (e.g., electrical, falls, confined spaces, lockout/tagout, working around water, caught in, struck by, excavation)
- 4. Evaluate facility life safety features (e.g., public space safety, floor loading, occupancy loads)
- 5. Describe fleet safety principles (e.g., driver and equipment safety, maintenance, surveillance equipment, GPS monitoring, telematics, hybrid vehicles, fuel systems, driving under the influence, fatigue)
- 6. Evaluate materials handling methods and controls (e.g., forklifts, aerial lifts, and other powered industrial trucks; cranes, hand trucks, hoists, rigging, manual handling, drones)
- 7. Evaluate the use of tools, machines, and equipment (e.g., hand tools, power tools, ladders, grinders, hydraulics, robotics)

Domain 2

Program Management • 25%

- 1. Compare performance against established benchmarks (e.g., gap analysis)
- 2. Analyze performance standards to determine plan of action
- 3. Determine how to measure, analyze, and improve EHS culture
- 4. Determine appropriate incident investigation techniques (root causes) and apply corrective actions
- 5. Describe the Management of Change process (prior, during, after)
- 6. Describe system safety analysis techniques (e.g., fault tree analysis, failure modes and effects analysis [FMEA], Safety Case approach, risk summation)
- 7. Evaluate leading and lagging indicators
- 8. Recognize safety, health, and environmental management and audit systems (e.g., ISO 14000 series, 45001, 19011, ANSI Z10)
- 9. Describe required components for plans, systems, and policies (e.g., safety, health, and environmental regulations and standards)
- 10. Utilize document retention or management principles (e.g., incident investigation, training records, exposure records, maintenance records, environmental management system, audit results, privacy, trade secrets, personal information)
- 11. Apply budgeting, finance, and economic analysis techniques and principles (e.g., timelines, budget development, resourcing, return on investment, cost/benefit analysis, role in procurement process)
- 12. Differentiate management leadership techniques (e.g., management theories, leadership theories, motivation, discipline, authority, responsibility, accountability, communication styles)
- 13. Apply project management principles and techniques (e.g., RACI charts, project timelines)
- 14. Analyze and/or interpret data (e.g., exposure, release concentrations, sampling data, mean, median, mode, confidence intervals, probabilities, Pareto analysis)

Domain 3

Risk Management • 15%

- 1. Apply general principles of the safety risk evaluation process (i.e., identifying, analyzing, evaluating, monitoring, and communicating risk affecting an organization)
- 2. Apply risk management strategies to identify and mitigate EHS hazards (e.g., risk analysis, job hazard analysis, process hazard analysis, hierarchy of controls)
- 3. Differentiate financial risk mitigation strategies as they relate to risk avoidance, risk retention, risk sharing, risk transfer, loss prevention and reduction
- 4. Apply risk analysis process of identifying, ranking, and monitoring (e.g., disasters/emergency preparedness, fire prevention, occupational health, hazardous materials management/environmental compliance)

Domain 4

Emergency Management • 9%

- 1. Create, employ, and maintain an Emergency Response Plan (e.g., fire, severe weather, nuclear incidents, natural disasters, terrorist attacks, chemical spills, utilities systems, cyber security)
- 2. Describe the elements in disaster response and recovery (e.g., incident command, business continuity, contingency plans)
- 3. Identify key components of fire prevention, protection, and suppression systems
- 4. Prepare procedures for the safe transportation and security of hazardous materials
- 5. Implement a workplace violence prevention program

Domain 5

Environmental Management • 6%

- 1. Describe environmental protection and pollution prevention programs (e.g., spill containment, abatement, best practices)
- 2. Identify procedures used to manage hazardous materials (e.g., GHS classification system, storage and handling, policy, security, hazardous waste storage and disposal)
- 3. Identify procedures used to manage waste (e.g., universal, recycling, spill clean-up, labeling, remediation)
- 4. Determine sustainability principles and practices (e.g., supply chain; reduce, reuse, recycle)
- 5. Describe the impact of environmental issues (e.g., aging infrastructure, asbestos, air pollution, climate change, environmental, social, and governance)

Domain 6

Occupational Health and Applied Science • 10%

- 1. Anticipate, recognize, evaluate, and control occupational exposures by implementing techniques for measurement, sampling, and analysis (e.g., hazardous chemicals, SDS, radiation, noise, biological hazards, heat/cold, indoor air quality, ventilation, nanoparticles, combustible dust, heat systems, high pressure, silica, powder and spray applications, blasting, molten metals, hot work, cold and heat stress, laser)
- 2. Understand principles of public health as applicable (i.e., fundamentals of epidemiology, infectious disease, risk factors, statistics to interpret data)
- 3. Apply toxicology principles to create exposure control plans and develop risk mitigation plans (e.g., using sampling equipment, symptoms of an exposure, LD50, LC50, mutagens, carcinogens, teratogens, ototoxins)
- 4. Evaluate principles related to ergonomics and human factors (e.g., visual acuity, body mechanics, lifting, vibration, anthropometrics, fatigue management)
- 5. Apply chemistry principles to calculate required containment volumes and hazardous materials storage requirements
- 6. Apply core concepts in physics (e.g., forms of energy, weights, forces, stresses)

Domain 7

Training • 10%

- 1. Describe the needs assessment process to determine worker training, competencies, and qualifications
- 2. Develop training programs with training materials to address various learning styles (e.g., presentation methods and tools)
- 3. Describe how to implement training programs utilizing the Continuous Improvement model
- 4. Determine the effectiveness of training programs (e.g., surveys, on-the-job compliance, feedback, assessments, demonstrations, quizzes)
- 5. Demonstrate working knowledge of education and training methods and techniques (e.g., classroom, online, simulation, computer-based, Artificial Intelligence, coaching, on-the-job training)
- 6. Understand adult learning principles (e.g., visual, auditory, reading and writing, kinesthetic)